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Tokamak plasmas
Typical parameters

● Pressure ~ 1 atmosphere

● Temperature ~ 100 million oC

● Density ~ 1020 m-3  
(3.3 x 10 -7 kg/m3 . Air ~ 1.2 kg/m3)

● Sound speed ~ 105 – 106 m/s

● Mean free paths ~ 1 – 100 m

● Ion gyrofrequency ~ GHz

● Global evolution timescale ~ 10s of ms  
< mm

meters
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Example model
A simple model can be derived from 
continuity of particles and charge:

Particles drift due to electric fields, magnetic 
inhomogeneities and time-varying fields
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Example model
Substituting this velocity into density and current equations gives:

Assuming incompressible, neglecting ion parallel flow, and making thin 
layer (Boussinesq) approximation gives:
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Example model

Incompressible fluid e.g.
Arakawa '65 and extensions

Gradients along 
magnetic field 
(compressible fluid)

Need to invert Laplacian to evaluate electric potential.
→ Spectral methods, multigrid schemes

Peterson, Hammett: 
http://dx.doi.org/10.1137/120888053

http://dx.doi.org/10.1137/120888053
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BOUT++
● An open-source library for solving PDEs in curvilinear geometry

● Specialised operators for plasma applications

● Finite difference / volume code in 3D mapped multi-block geometry

● Solves nonlinearly coupled hyperbolic, parabolic and elliptic equations

● MPI parallelised, scales to ~ 4,000 cores (depending on problem)

● Turbulence ~106-108 unknowns, ~105 core-hours
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BOUT++: example model

ddt(n) = -vE_Grad(n,phi+phi0)
         + Div_par(Jpar)
         + 2*DDZ(n)*(rho_s/R_c);

ddt(omega) = -bracket(phi,omega)
             + Div_par(Jpar)
             + 2*DDZ(n)*(rho_s/R_c);

 phi = phiSolver->solve(omega); 

https://github.com/boutproject/BOUT-dev/tree/master/examples/blob2d

https://github.com/boutproject/BOUT-dev/tree/master/examples/blob2d
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BOUT++: Method of Lines
Physical model

ODE time 
integrator

Evolving fields 
e.g. density

Time 
derivatives 
of each field

Elliptic 
solvers

Spatial 
derivatives

Arithmetic
operators

Communication
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BOUT++ mesh
3D mesh, locally logically Cartesian

Quantities usually cell centre; some staggered cell face values

Represented as Field3D objects

Field3D n, T;
…
Field3D p = n * T;
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BOUT++ mesh
3D mesh, locally logically Cartesian

Guard/ghost cells used for boundaries and communication

Communication 
through guard cells

Communication handled by Mesh:

mesh->communicate(n, T);
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BOUT++ mesh
3D mesh, locally logically Cartesian

More complicated topologies 
handled using branch cuts
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BOUT++ mesh
3D mesh, locally logically Cartesian

More complicated topologies 
handled using branch cuts

Tokamak edge simulations usually 
have at least one “X-point” and a 
hole in the domain.
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Coordinates

Toroidal angle
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Twist-shift boundary (matching) condition

Usually curved, usually non-orthogonal
aligned to the helical magnetic field.

In the core of the plasma the domain is a 
twisted ribbon
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Coordinates
Usually curved, usually non-orthogonal
aligned to the helical magnetic field.

In the core of the plasma the domain is a 
twisted ribbon

Pitch of the magnetic field varies

Leads to shearing of coordinate system

Often necessary to re-map onto local 
coordinates to reduce shearing

Shifts in toroidal angle → FFTs
Toroidal angle
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y

Twist-shift boundary (matching) condition
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Modular structure

Factory

Input options

Many parts of BOUT++ have multiple implementations. 
Changed with an input option, with no/minimal user code changes.

● Time integration
● File input/output format
● Laplacian solvers
● Mesh (more difficult, experimental)

Implementation

Implementation

Implementation

Implementation



19 / 42

Outline

● Plasma modelling, drift-reduced models

● BOUT++ code structure

● Recent changes (last ~ 2-3 years)

– Electromagnetic field solvers, global modes

– Complex magnetic geometries (FCI scheme)

● Getting started

● Contributing to BOUT++



20 / 42

Solving potentials
Need to invert a Laplacian to obtain potential from vorticity:

Parallel component
not zero, but neglected 
under flute assumption

Field-aligned coordinates uses toroidal planes as drift planes:

Coordinates
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Solving n=0 modes
● Solving on toroidal planes results 

in large savings: Each X-Z slice 
can be solved separately

● For low n modes this 
simplification breaks down. 
Results in unphysical electric 
fields close to the X-point

● A 2D solver has been developed 
for the n=0 mode using PETSc 

B D Dudson, J Leddy, “Hermes”, PPCF 59(5), 054010 (2017)
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Solving n=0 modes

Transient oscillation

Drifts, currents
Evolve n=0 electric field

Transients and steady state 

Steady state

B D Dudson, J Leddy, “Hermes”, PPCF 59(5), 054010 (2017)
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Complicated magnetic fields
X-point Snowflake

W.A.J. Vijvers et al 2014 Nucl. Fusion 54 023009Stellarator

Y Suzuki and J Geiger 2016 PPCF 58 064004 
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Flux coordinate independent
Field aligned grids are required in order to:
→ Significantly reduce resolution in one dimension
→ Accurately capture anisotropic transport

Field-aligned coordinates have singularities 
→ Reduces convergence rate
→ Can lead to numerical instability
→ Difficult to resolve features close to the X-point

The FCI approach is to use:
● Well-behaved local coordinates,
● field-line following and interpolation to calculate 

parallel derivatives

[1] F Hariri and M Ottaviani CPC 184 2419 (2013) 
[2] B Shanahan, P Hill and B Dudson. Journal of Physics; Conference Series 775, 012012 (2016)
[3] A.Stegmeir et al. CPC 198, 139-153 (2016)
[4] P Hill, B Shanahan and B Dudson CPC 213, 9-18 (2017)
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Tokamak simulations
y

x

z

MAST geometry (shot 14220)
R = 0.2 → 2m   ;  Z = -1.5 → +1.5m

Simple sheath boundary conditions 
at walls: v

||
 = cs

Electromagnetic field evolved (Alfven 
waves), but B perturbation not 
included (for now)
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Tokamak filaments (n=5)

x 1019 m-3

Seeded 
location

x 1019 m-3

Plasma density Plasma density (log)
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Tokamak filaments

 Start with an isolated plasma “ball”
(no background)

 Evolve only parallel diffusion (105 m/s)
for ~10µs → Filament

 Turn on drifts, electric fields 

(Under-resolved proof-of-principle)

50eV 100eV 200eV
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Stellarator simulations

B Shanahan, B Dudson, P Hill, “BSTING”, Submitted to PPCF (2018)

 New grid generator for (nearly) arbitrary shapes

 Initial blob studies in “straight stellarators”

 Simulations of Wendelstein 7-X started
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Other recent changes
Some of the many fixes and new features

1. Ability to handle complex 3D magnetic field structures
2. Better electromagnetic field solvers
3. Running BOUT++ from Python
4. Faster, clearer loops, C++11 features**
5. Better differential operators, flux-conserving schemes
6. More usable, easier to install, debug, optimise, extend

** See performance talk (tomorrow)
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Getting started
http://boutproject.github.io/

http://boutproject.github.io/
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Getting started
http://bout-dev.readthedocs.io

http://bout-dev.readthedocs.io/
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Getting started
https://github.com/boutproject/BOUT-dev

https://github.com/boutproject/BOUT-dev
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Install docker

● Provides a reproducible environment 
(like a virtual machine or BSD jail)

Windows:
https://docs.docker.com/docker-for-windows/install/

Mac:
https://docs.docker.com/docker-for-mac/install/

Ubuntu linux
https://docs.docker.com/install/linux/docker-ce/ubuntu/

Others:
https://docs.docker.com/v17.12/install/

Jarrod Leddy (Tech-X)

https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/v17.12/install/
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BOUT++ docker image
● Provides a reproducible environment (like a 

virtual machine or BSD jail)

● Preinstalled with PETSc, SLEPC, SUNDIALS, 
BOUT++, editors and python analysis tools

$ sudo docker pull boutproject/boutproject/bout-next:9f4c663-petsc

$ sudo docker run --rm -it boutproject/bout-next:9f4c663-petsc

Jarrod Leddy (Tech-X)

https://hub.docker.com/r/boutproject/bout-next/

https://hub.docker.com/r/boutproject/bout-next/
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Development process

Code hosted on Github
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Development process

A system of branches with master, next and features
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Development process

Automated testing using Travis (unit, integrated and MMS tests)
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Development process

Merges into next must pass tests and review
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Development process

Documentation automatically pulled from Github to ReadtheDocs
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Summary

● Fusion plasma physics has many interesting challenges

● BOUT++ has developed as a flexible tool to address a wide 
range of different problems. 

● A good community of users and developers are pushing the 
code in new directions and adding capabilities

● Development is increasingly professional, with increasing 
emphasis on maintainability, reproducibility and correctness.

We welcome new contributors and collaborators!
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